Apatite and Chitin Amendments Promote Microbial Activity and Augment Metal Removal in Marine Sediments

نویسندگان

  • Jinjun Kan
  • Anna Obraztsova
  • Yanbing Wang
  • Jim Leather
  • Kirk G. Scheckel
  • Kenneth H. Nealson
  • Y. Meriah Arias-Thode
چکیده

In situ amendments are a promising approach to enhance removal of metal contaminants from diverse environments including soil, groundwater and sediments. Apatite and chitin were selected and tested for copper, chromium, and zinc metal removal in marine sediment samples. Microbiological, molecular biological and chemical analyses were applied to investigate the role of these amendments in metal immobilization processes. Both apatite and chitin promoted microbial growth. These amendments induced corresponding bacterial groups including sulfide producers, iron reducers, and phosphate solubilizers; all that facilitated heavy metal immobilization and removal from marine sediments. Molecular biological approaches showed chitin greatly induced microbial population shifts in sediments and overlying water: chitin only, or chitin with apatite induced growth of bacterial groups such as Acidobacteria, Betaproteobacteria, Epsilonproteobacteria, Firmicutes, Planctomycetes, Rhodospirillaceae, Spirochaetes, and Verrucomicrobia; whereas these bacteria were not present in the control. Community structures were also altered under treatments with increase of relative abundance of Deltaproteobacteria and decrease of Actinobacteria, Alphaproteobacteria, and Nitrospirae. Many of these groups of bacteria have been shown to be involved in metal reduction and immobilization. Chemical analysis of poreand overlying water also demonstrated metal immobilization primarily under chitin treatments. X-Ray absorption spectroscopy (XAS) spectra showed more sorbed Zn occurred over time in both apatite and chitin treatments (from 9% 27%). The amendments improved zinc immobilization in marine sediments that led to significant changes in the mineralogy: easily mobile Zn hydroxide phase was converted to an immobile Zn phosphate (hopeite). In-situ amendment of apatite and chitin offers a great bioremediation potential for marine sediments contaminated with heavy metals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Marine microbial community response to inorganic and organic sediment amendments in laboratory mesocosms.

Sediment amendments provide promising strategies of enhancing sequestration of heavy metals and degradation of organic contaminants. The impacts of sediment amendments for metal and organic remediation including apatite, organoclay (and apatite and organoclay in geotextile mats), acetate, and chitin on environmental microbial communities in overlying water and sediment profiles are reported her...

متن کامل

Ecotoxicological response of marine organisms to inorganic and organic sediment amendments in laboratory exposures.

Experimental materials currently being investigated for use as amendments for the in situ remediation of contaminated sediments were assessed for their potential impacts on marine benthos. Laboratory toxicity tests involving lethal and sublethal endpoints were conducted on sediments amended with apatite, organoclay, chitin, or acetate, with the polychaete Neanthes arenaceodentata, the amphipod ...

متن کامل

The Conversion of Inorganic Phosphorus Fractions, Phosphatase Activity, and Some Biological Properties in Sandy Soil Enriched with Minerals, Organic Matter, and Microbial Modifiers under Two Months of Incubation

This study investigated the effect of the inoculation of the soil with some phosphorus solubilizing microorganisms (PSM) on inorganic P fractions in sandy soil enriched with inorganic and organic amendments. A factorial experiment arrangement was performed in a completely randomized design with three replications, using two factors: microorganisms (control, Entrobacter cloacae, Brevundimonas, a...

متن کامل

Interactions among phosphate amendments, microbes and uranium mobility in contaminated sediments.

The use of sequestering agents for the transformation of radionuclides in low concentrations in contaminated soils/sediments offers considerable potential for environmental cleanup. This study evaluated the influence of three types of phosphate (rock phosphate, biological phosphate, and calcium phytate) and two microbial amendments (Alcaligenes piechaudii and Pseudomonas putida) on U mobility. ...

متن کامل

Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil-contaminated beach sediments.

Nutrient amendment to oil-contaminated beach sediments is a critical factor for the enhancement of indigenous microbial activity and biodegradation of petroleum hydrocarbons in the intertidal marine environment. In this study, we investigated the stimulatory effect of the slow-release fertilizers Osmocote (Os; Scotts, Marysville, OH) and Inipol EAP-22 (Ip; ATOFINA Chemicals, Philadelphia, PA) c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013